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ABSTRACT

Two different formulations of the conventional coupled-mode

theory, one based on the partition of the total field and the other

based on the projections of the same field on local complete

sets, are compared. They are proved to be consistent with each

other when the individual waveguide mode overlap integrals are

appropriately taken into account.

INTRODUCTION

The use of coupled-mode theory for analyzing the coupling

between parallel dielectric waveguides has been well known in

the fields of integrated optics and fiber optics [ 1] -[3]. Recently,

much interest has been shown in obtaining “improved” coupled-

mode equations for dielectric guides [4] - [6], in which the inte-

grated overlap of the individual waveguide modes over all space,

that was usually ignored in the “conventional” theones, is in-

cluded. It is claimed that these new equations could extend the

coupled-mode theory to more strongly coupled waveguide geome-

tries and it has been demonstrated that the accuracy is signifi-

cantly increased for coupling between nonidentical slab wave-

guides. For the case of coupling between circular cylindrical

guides, it has recently been pointed out that the simpler conven-

tional theory occurs to give better results for coupling between

touching identical optical fiber cores [7].

The objective of this paper is to compare two different

forms of the conventional coupled-mode theory, one based on

the partition modal amplitudes [ 1], [3] and the other based on

the projection modal amplitudes of the total field [2]. The

partition modal amplitude and the projection modal amplitude

will be defined in the next section and their meanings will become

clear there. We show the consistency of these two formulations

through the derivation of the “improved” equations and the

relationship between the two different modal amplitudes. It is

found that proper inclusion of the individual-guide overlap integral

in the initial conditions, or the consideration of butt coupling

[5], is essential in establishing this consistency. For simplicity,

we discuss the theory for the coupling between two parallel

dielectric waveguides, each supports only one guided mode when

in isolation.

COUPLED-MODE EQUATIONS CONTAINING

OVERLAP INTEGRALS

Consider two parallel waveguides denoted “a” and “b”,

which may differ in shape, size, andjor index of refraction. Let

~ = ~ (X,y) be the dielectric constant of the coupled sYstem and

~~al = ~ (al (x,y) and ( (b) = ~ (b) (x)y) be the dielectric constants

of the individual waveguides singly embedded in the surrounding

medium. The definitions lead to the understanding that e –

~ (a) and ~ _ ~@) are the perturbations to the respective wave-

guide dielectric distribution. We assume exp (–iu t) field varia-

tions so that propagation along the guides is described by exp (ipz).

Let the fields ~ (x,y,z) = Et (x,Y,z) + ~. (x,y,z) and ~ (x,Y,z) =

Et (x,y,z) + ~. (x,Y,z) be the unknown solutions which satisfy

Maxwell’s equations plus the boundary conditions of the coupled

system with c (x,y), where the subscripts t and z correspond to

the transverse and the longitudinal components, respectively.

The modal vectorial fields of waveguide “a” are of the form

where p = 1 corresponds to the guided mode propagating in the +Z

direction and I p I > I correspond to the radiation modes. We

have the following relationships between the forward and back-

ward propagating modes for the transverse and longitudinal field

components and the modal propagation constant,

E&’p)t(x,Y) = i#’;(x)Y), E:P)Z(Z,Y) = –S-$(X.Y) (2a)

and the orthogonality relation

(3)

Similar expressions can be written for waveguide “b” when

(a) in ( 1)–(3) is replaced by (b).

Because of the completeness of the transverse-modal fields
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of the individual waveguides, we have the modal expansions

for the unknown fields

it (x,Y,z) = ; ap (z) $~~ (x,y) = ; bp(z) ~~ (x,y) (4a)

and fit (x,y,z) = ; ap (z) fi~~ (x,y) = z bp (z) ~~t) (x,y). (4b)
P

We call ap (z) and bp(z) the projection modal amplitudes of the

unknown fields. By following the derivation given in [2] but

using the unconjugated reciprocity theorem, it can be shown

[8] that al (z) and bl (z) obey the following differential equations

d al (z)

dz
= ip~)al(z)+i ~J((–~(a))

[+) – 6:) ].[&+~z]dxdy (5a)

d b,(z) _
.

dz
ifr~b)b,(z)+i ~ JJ(~ – E‘b))

~=:)- 5:) ] . [F,+~z] dxdy (5b)

It should be noted that (5a) and (5b) are exact, since no approxi-

mations have been used in the derivation. At this point, we

defiie

CUV= ~ ~ ;. (4)X ~~))dxdy, u,v=a, b. (6)

Note that Cab and Cba are the overlap integrals which describe the

individual waveguide mode overlap. In deriving (5a) and (5 b),

we have assumed Caa = ~b = 1.

Now, if we assume that Et (x,y,z) and fit (x,y,z) can be

expressed as

~t(x,y,z) = A(z) +: (X,y) + B(z) 6:)(X,y) (7a)

and

&(X,y,z) = A(z) ~j (X,y) + B(z) ~;(X,y), (7a)

then from Maxwell’s equations we have [2], [6]

~ (a) E (b) _(~)
~z (x,Y,z) = A(z) ~ ::) (X,y) + B(z) ~ elz (x,Y)

(8a)

and

fiz (x,y,z) = A(z) ;~)(x,Y) + B(z) ~:)(x,Y). (8b)

Consequently, (5a) and (5b) can be reduced to the following form

d al (z)
— .

dz
i~?al (z)+ i fiaa A(z) + i fiab B(z) (9a)

db, (z)
‘b) b, (z) + i fibb B(z) + i kba A(z)— = ib’,

dz
(9b)

where

~ ‘v) -(u) -(v) ~
Lv = ; J (e –g(”))[E:).&;)– _

%z
. elz

c

dxdy u,v=a, b. (lo)

We call A(z) and B(z) the partition modal amplitudes, since the

total field is assumed to be partitioned into two parts with ampli-

tudes A(z) and B(z), respectively.

If we choose A(z) and B(z) such that

al (z) = A(z) + Cab B(z) (ha)

b, (z)= B(z)+ C%. A(z) (llb)

and substitute into (9a) and (9 b), it can be shown [8] that the

resulting coupled equations for A(z) and B(z) are identical to

those derived in [4] with A(z) = U(z) and B(z) = V(z). The

conditions (11 a) and (11 b) are equivalent to requiriug the residual

fields be orthogonal to the two individual guided modes [4].

Note that (11 a) and (1 lb) are obtained by the cross product of

h(~j and h:) with (7a). If we cross product et) and e:) with (7 b),

the Cab and Cba should be exchanged. The overlap integrals

(&b and Cba are slightly different due to the possible small dif-

ference in the wave impedance of the two guided modes. Due

to this subtlety, we might as well choose to write

a, (z)= A(z)+ ~ B(z) (12a) ‘

b, (Z)= B(z)+ ~A(z) (12b)

where C = (Cab + Cbti)/z. Substituting (12a) and ( 12b) into (9a)

and (9b) and solve them simultaneously, we obtain the coupled-

mode equations, which are the same as those given in [ 6],

d A(z)
— = i T. A(z) + i Kab B(z)

dz
(13a)

d B(z)

dz
= i ~b B(z) + i Kba A(z) (13b)

where

~ac~~)+[~aa–&b~]/(~-~2) (14a)

~b n~~)+[tibb –kba ~]/(1–~) ( 14b)

Kab=[~ba –’iibb ~]/(l– C’) (14C)

Kba= [ fiab –&’C]/(l- C*) ( 14d)

In writing ( 14a)-( 14d), the relation

%ba –&b c 5( 6$)– ~fb)) (15)

has been used. Note that this relation can be derived from the

reciprocity theorem and is an exact one [6].

THE CONVENTIONAL COUPLED-MODE EQUATIONS

The equations (13a) and ( 13b) contain the overlap integrals

Cab and Cba. In the conventional coupled-mode theory, these

overlap integrals are assumed small and ignored. In doing so, (13a)
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and ( 13b) become

d A(z)

dz
= i ( 6!) + Kaa ) A(z) + i & B(z) (16a)

d B(z)

dz
= i ( ~ib) + Kbb ) B(z) + i ~ab A(z) ( 16b)

which are the equations given in [3]. If Kaa and Kbb, which are

one-order smaller than kba and ~ab, are also ignored, (16a) and

( 16b) would lead to the equations derived in [ 1]. We call ( 16a)

and ( 16b) the conventional coupled-mode equations based on the

partition modal amplitudes.

Now consider (9a), (9b) and (12a), ( 12b). We solve (12a)

and ( 12b) for A(z) and B(z) and obtain

A(z)= [al(z) –~bl(z)]/(l–~, ). (17a)

B(z)= [b, (z)– Ca, (z)l)(l– C ). (17b)

Substituting (17a) the ( 17b) into (9a) and (9b) and ignoring the

similar terms as we derived (16a) and ( 16b), we obtain

d a, (z)

dz
= i(~!)+Kaa )al(z)+i~ab b,(z) (1 8a)

db, (z)
‘b) + ~bb ) b, (z) + i ~ba % (z)——

dz
=i(Dl ( 18b)

which we call the conventional coupled-mode equations based on

the projection modal amplitudes.

Comparing (16a), ( 16b) and (18a), ( 18b), we observe that

the parameters Kab and Kba appear in different places. However,

if Km and Kbb are ignored, it is easy to show that these two sets

of equations are equivalent through the relation (15) and equations

(12a) and (12b). The essential point, due to (12a) and (12b),

is that if A(0) and B(0) are the initial conditions for (16a) and

(16b), then al (0) = A(0) + ~B(0) and b, (0) = B(0) + CA(O)

should be used as the initial conditions for (18a) and ( 18b).

Using such initial conditions, it can be shown that the solutions

to ( 16) and ( 18) satisfy the relations

al (z) = A(z) + ~B(z)

= {al (0) [ cos (Jz) - i 6y)~$6:) sin ($z)]

(.) (b)

i Kab
+bl (0) ~ sin (~z) } e ‘+’

b, (Z)= B(z)+ ~ A(z)

= {al (O)* sin (o z)

lib)–BP‘ .- _L-z
+b, (0)[cos($z)+i ~, sin ($z)] }e’—z

~Y
(19b)

where +=J [ p$’–@]2/d+tiab tiba, (20)

and we have ignored ~aa and kbb.

In the study of power coupling between two optical wave-

guides [4], [5], the power output or the power remaining in

individual guide is estimated as 1A(z) + C B(z) 12 or 1B(z) + C

A(z) 12, which is simply I a, (z) 1’ or I b, (z) 12. Therefore, we

think it is more advantageous to using the coupled-mode equations

based on projection modal amplitudes such as ( 18). Making use of

the concept of “butt coupling” [5], it is easy to understand that

initial conditions such as A(0) = 1, B(0) = O for the equations

based on partition modal amplitudes lead to a nonzero initial value

for b, (z).

CONCLUSION

Two different formulations of the conventional coupled-

mode theory for dielectric waveguides, one based on the partition

modal amplitudes and the other based on the projection modal

amplitudes, have been examined. We have shown the consistency

of these two formulations by using a relation among the coupling

coefficients, the overlap integral, and the propagation constants

(equation (15)) and considering the relationship between the

partition modal amplitudes and the projection modal amplitudes

(equation (12)). The individual waveguide mode overlap integral,

or the concept of butt coupling, has been found to play an essen-

tial role in reaching the conclusion.
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