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ABSTRACT

Two different formulations of the conventional coupled-mode
theory, one based on the partition of the total field and the other
based on the projections of the same field on local complete
sets, are compared. They are proved to be consistent with each
other when the individual waveguide mode overlap integrals are
appropriately taken into account.

INTRODUCTION

The use of coupled-mode theory for analyzing the coupling
between paralle] dielectric waveguides has been well known in
the fields of integrated optics and fiber optics [1]1-[3]. Recently,
much interest has been shown in obtaining “improved” coupled-
mode equations for dielectric guides [4]-[6], in which the inte-
grated overlap of the individual waveguide modes over all space,
that was usually ignored in the ‘“‘conventional” theories, is in-
cluded. It is claimed that these new equations could extend the
coupled-mode theory to more strongly coupled waveguide geome-
tries and it has been demonstrated that the accuracy is signifi-
cantly increased for coupling between nonidentical slab wave-
guides. For the case of coupling between circular cylindrical
guides, it has recently been pointed out that the simpler conven-
tional theory occurs to give better results for coupling between
touching identical optical fiber cores [7].

The objective of this paper is to compare two different
forms of the conventional coupled-mode theory, one based on
the partition modal amplitudes {1], [3] and the other based on
the projection modal amplitudes of the total field [2]. The
partition modal amplitude and the projection modal amplitude
will be defined in the next section and their meanings will become
clear there. We show the consistency of these two formulations
through the derivation of the “improved” equations and the
relationship between the two different modal amplitudes. It is
found that proper inclusion of the individual-guide overlap integral
in the initial conditions, or the consideration of butt coupling
[51, is essential in establishing this consistency. For simplicity,
we discuss the theory for the coupling between two parallel
dielectric waveguides, each supports only one guided mode when
in isolation.
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COUPLED-MODE EQUATIONS CONTAINING
OVERLAP INTEGRALS

Consider two parallel waveguides denoted “a” and “b”,
which may differ in shape, size, and/or index of refraction. Let
€ = € (x,y) be the dielectric constant of the coupled system and
e® = ¢@ (xv) and € ® = ¢ ®) (x,y) be the dielectric constants
of the individual waveguides singly embedded in the surrounding
medium. The definitions lead to the understanding that € —
e® and ¢ — €® are the perturbations to the respective wave-
guide dielectric distribution. We assume exp (—iwt) field varia-
tions so that propagation along the guides is described by exp (iBz).
Let the fields E (x,y,2) = Et (x,y,2) + Bz (x,y,2) and H (x.y,2) =
Hi(x,y,z) + Hz(x,y,z) be the unknown solutions which satisfy
Maxwell’s equations plus the boundary conditions of the coupled
system with ¢ (X,y), where the subscripts t and z correspond to
the transverse and the longitudinal components, respectively.
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The modal vectorial fields of waveguide “a” are of the form
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where p = | corresponds to the guided mode popagating in the +z
direction and | p | > | correspond to the radiation modes. We
have the following relationships between the forward and back-
ward propagating modes for the transverse and longitudinal field
components and the modal propagation constant,
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Similar expressions can be written for waveguide ‘“‘b”’ when
(a) in (1)—(3) is replaced by (b).
Because of the completeness of the transverse-modal fields
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of the individual waveguides, we have the modal expansions
for the unknown fields

E&mD‘Ea&Ywﬁw“Eb&) ) (x,) (4a)
and Ht (xy,2)= 2a @00 (xy)= b @A (xy).  (@b)
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We call a, (z) and b p(z) the projection modal amplitudes of the
unknown fields. By following the derivation given in [2] but

using the unconjugated reciprocity theorem, it can be shown
[8] that a, (z) and b, (z) obey the following differential equations
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It should be noted that (5a) and (5b) are exact, since no approxi-
mations have been used in the derivation.
define

At this point, we
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Note that Cab and Cba are the overlap integrals which describe the
individual waveguide mode overlap. In deriving (5a) and (5b),
we have assumed C,, Cbb =1.

Now, if we assume that Et (x,y,z) and Ht (x,y,Z) can be

expressed as

Ei(x,y,2) =A@ &) (x,y) + B(2) 8% (x,y) (7a)
and N _
Hi(xy,2) =A@ I (x,y) + B(2) B (x,), (72)

then from Maxwell’s equations we have [2], [6]
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and

Ha(x,y,2) = A@z) h®00y) + B(2) B (x,y). (8b)

Consequently, (5a) and (5b) can be reduced to the following form
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We call A(z) and B(z) the partition modal amplitudes, since the
total field is assumed to be partitioned into two parts with ampli-
tudes A(z) and B(z), respectively.

If we choose A(z) and B(z) such that

a; (z) = A(z) + Cab B(2) (11a)

b, (2) = B(z) + Cva A(2) (11b)
and substitute into (9a) and (9b), it can be shown [8] that the
resulting coupled equations for A(z) and B(z) are identical to
those derived in [4] with A(z) = U(z) and B(z) = V(z). The
conditions (11a) and (11b) are equivalent to requiring the residual
fields be orthogonal to the two individual guided modes [4].
Note that (11a) and (11b) are obtained by the cross product of
h(ft) and h(ﬁ) with (7a). If we cross product e(ft’) and e%)) with (7b),
the Cab and Cba should be exchanged. The overlap integrals
Cab and Coa are slightly different due to the possible small dif-
ference in the wave impedance of the two guided modes. Due
to this subtlety, we might as well choose to write

2.(2) = A(2) +CB(®) (12a)

b;(z) = B(2) + C A(2) (12b)
where C = (Cab + Cva)/2. Substituting (12a) and (12b) into (9a)
and (9b) and solve them simultaneously, we obtain the coupled-

mode equations, which are the same as those given in [6],
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In writing (14a)-(14d), the relation
Kba — Kan = C (8% — P 15)

has been used. Note that this relation can be derived from the
reciprocity theorem and is an exact one [6].

THE CONVENTIONAL COUPLED-MODE EQUATIONS
The equations (13a) and (13b) contain the overlap integrals

Cab and Cova. In the conventional coupled-mode theory, these
overlap integrals are assumed small and ignored. In doing so, (13a)



and (13b) become

d A(z) (@
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which are the equations given in {3]. If Kaa and Kbb, which are
one-order smaller than Kba and Kab, are also ignored, (16a) and
(16b) would lead to the equations derived in [1]. We call (16a)
and (16b) the conventional coupled-mode equations based on the
partition modal amplitudes.

Now consider (9a), (9b) and (12a), (12b). We solve (12a)
and (12b) for A(z) and B(z) and obtain

A@=[2@)-Ch@1/(1-C).
B(z)=[b,(@~Ca 21/(1-T).

(17a)
(17b)

Substituting (17a) the (17b) into (9a) and (9b) and ignoring the
similar terms as we derived (16a) and (16b), we obtain
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which we call the conventional coupled-mode equations based on
the projection modal amplitudes.

Comparing (16a), (16b) and (18a), (18b), we observe that
the parameters iab and Kba appear in different places. However,
if ﬁaa and ﬁbb are ignored, it is easy to show that these two sets
of equations are equivalent through the relation (15) and equations
(12a) and (12b). The essential point, due to (12a) and (12b),
is that if A(O) and B(0) are the initial conditions for (16a) and
(16b), then 2,(0) = A(0) + CB(0) and b,(0) = B(0) + CA(0)
should be used as the initial conditions for (18a) and (18b).
Using such initial conditions, it can be shown that the solutions
to (16) and (18) satisfy the relations

a,(z) = A(2) + C B(2)

89—
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={a (O diba sin (¥ z)
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where =/ [8®_ p®12/4 + Kap Koo, (20

and we have ignored Kaa and Kob.
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In the study of power coupling between two optical wave-
guides [4], [5], the power output or the power remaining in
individual guide is estimated as | A(z) + C B(z) | or | B(z) +C
A(z) |*, which is simply |a;(z)1* or | b;(z) |*. Therefore, we
think it is more advantageous to using the coupled-mode equations
based on projection modal amplitudes such as (18). Making use of
the concept of “butt coupling” [5], it is easy to understand that
initial conditions such as A(Q) = 1, B(0) = O for the equations
based on partition modal amplitudes lead to a nonzero initial value
for b, (z).

CONCLUSION

Two different formulations of the conventional coupled-
mode theory for dielectric waveguides, one based on the partition
modal amplitudes and the other based on the projection modal
amplitudes, have been examined. We have shown the consistency
of these two formulations by using a relation among the coupling
coefficients, the overlap integral, and the propagation constants
(equation (15)) and considering the relationship between the
partition modal amplitudes and the projection modal amplitudes
(equation (12)). The individual waveguide mode overlap integral,
or the concept of butt coupling, has been found to play an essen-
tial role in reaching the conclusion.
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